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HADRON COLLIDER
•Useful machine to discover new physics
•Do we really understand what is going on?

?



WHAT IS REALLY GOING ON …
•Initial state parton shower
•Signal process (production 
of jets)
•Final state parton shower
•Fragmentation 
(hadronization)
•Hadron decays
•Beam remnants
•Underlying events

A Mess !!! Need Factorization



FACTORIZATION

•Physics of interest at 
hard scale MH

•Parton shower evolution 
from MH to ΛQCD 
•Final state hadronization 
at ΛQCD

Factorization: separates long distance (low energy) 
and short distance (high energy) behavior



Live at hard scale Live at non-perturbative scale

RG evolve to hard scale

A FAMILIAR EXAMPLE

•PDFs live at non-perturbative scale and can be measured 
experimentally
•Partonic cross section can be obtained using perturbative 
calculation
•Bring two scales together through RG running



Live at hard scale

Kinematic
constraints

Multiple
Disparate
scales

Live at non-perturbative scale

RG evolve to hard scale

Additional factorization and
resummation required

RESUMMATION

•Evolution of PDF resums the large logs of hard and non-
perturbative scales
•Final state restriction introduces new scales
•Example: low transverse momentum distribution in Drell-
Yan process / Higgs production
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where X=W, Z, H, high-ET jets, SUSY sparticles, black hole, …, and Q 

is the ‘hard scale’ (e.g. = MX), usually !F = !R = Q, and " is known …

• to some fixed order in pQCD, e.g. high-ET jets

• or in some leading logarithm approximation 

(LL, NLL, …) to all orders via resummation

Summary: the QCD factorization theorem for hard-

scattering (short-distance) inclusive processes
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of studying transverse momentum distributions at hadron colliders. We outline future direc-

tions for the study of transverse momentum resummation within the e�ective field theory

framework.

Our paper is organized as follows. In Section II we pedagogically review the factorization

theorem derived in our previous work [19] and present its extension to electroweak gauge

boson production. The details of this extension are presented in appendix A. All analytic

results for the matching coe⇤cients, iBFs and iSFs required for phenomenology to NLL and

partial NNLL accuracy are presented in Section III. The structure of the RG running in

the e�ective theory, which resums large logarithms of the form ln (M/pT ), is discussed in

Section IV. Simple analytic expressions for the resummed cross sections valid through NLL

are shown in Section V. We discuss the relationship between the various quantities appearing

in the SCET approach with those appearing in the CSS formulation in section VI, and show

the consistency of the methods through NLL. We discuss what further work must be done

to establish the relationship to higher orders. Numerical results for Higgs production and Z

boson production are shown in Section VII, and the agreement with the Tevatron data for

Z production is demonstrated. Finally, we conclude in Section VIII.

II. REVIEW OF THE FACTORIZATION THEOREM

We begin by summarizing the content and derivation of our previously-studied factoriza-

tion theorem [19], and present its extension to the case of electroweak gauge boson produc-

tion. The details of this extension are presented in appendix A. The derivation and result

of our factorization analysis are shown schematically below:

d2⇥

dp2TdY
⇤

⇤
PS |MQCD|2 (1)

⌅ (match QCD to SCETpT )

⇤
⇤

PS |C � �OSCET  |2

⌅ (SCET soft-collinear decoupling)

⇤ H � Bn � Bn̄ � S

⌅ (zero-bin and soft subtraction equivalence)

⇤ H � B̃n � B̃n̄ � S�1

⌅ (match SCETpT to SCET�QCD)

⇤ H �
�
In � In̄ � S�1

⇥
⌃ ⇧⌅ ⌥

G

�fi � fj.

• In the first stage of the analysis, full QCD is matched onto an e�ective field theory

which contains fields with the following momentum scalings:

pn ⇤ M(�2, 1, �), pn̄ ⇤ M(1, �2, �), ps ⇤ M(�, �, �), � ⇤ pT
M

,

TRANSVERSE MOMENTUM 
• Observable of interest

1

mt, MW (1)

mb (2)

mc (3)

ms (4)

mu,d (5)

�QCD (6)

MW � mµ (7)

mb � �QCD (8)

��, Z, W, h (9)

Sonny Mantry:

1. Implications of a Scalar Dark Force for Terrestrial Experiments(arXiv:0902.4461): A

long range Weak Equivalence Principle (WEP) violating force between Dark Matter

(DM) particles, mediated by an ultralight scalar, is tightly constrained by galactic

dynamics and large scale structure formation. We examine the implications of such

a ”dark force” for several terrestrial experiments, including Eotvos tests of the WEP,

direct-detection DM searches, and collider studies. The presence of a dark force implies

a non-vanishing e⇥ect in Eotvos tests that could be probed by current and future

experiments depending on the DM model. For scalar singlet DM scenarios, a dark

force of astrophysically relevant magnitude is ruled out in large regions of parameter

• Higgs Boson searches ➔ pT cut introduced by jet veto 
• W-mass measurement ➔ transverse mass endpoint smeared 
by small W pT due to ISR 
• Tests of pQCD
• Probe of transverse nucleon structure

Motivations

Restrict pT and Y



TRANSVERSE MOMENTUM SPECTRUM 

CDF data for Z production: 
hep-ex/0001021

•Observable of interest

• High pT region: non-singular term 
dominates
• Low pT region: perturbation series 
diverges

Large Logarithms spoil 
perturbative convergence



RESUMMATION OF 
TRANSVERSE MOMENTUM

• Resummation has also been studied recently using the EFT 
approach.

• Resummation has been studied in great detail in the Collins-
Soper-Sterman formalism.

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Brock, Ladinsky Landry, 
Nadolsky; Yuan; Fai, Zhang; Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, Cherdnikov, 

Stefanis; Belitsky, Ji,.... )

(Idilbi, Ji, Juan; Gao, Li, Liu; SM, Petriello; Becher, Neubert)



•Y term neglected for the purpose here
•A,B,C have well-defined perturbative expansions
•Integration of impact parameter b⊥ introduce Landau pole: 
a treatment must work for any value of pT 

Landau Pole

Sudakov
Factor

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
AB→CX

dQ2 dy dQ2
T

=
1

(2π)2

∫

d2b ei !QT ·!b WAB→CX(b, Q, xA, xB)

=
∫ db

2π
J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
T ) lnm(Q2/Q2

T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)

7

COLLINS-SOPER-STERMAN 
FORMALISM



COLLINS-SOPER-STERMAN 
FORMALISM

Figure 8: NLL+LO spectra for different choices of the resummation scale Q at fixed µR =
µF = MH .

The numerical results presented so far refer to the value MH = 125 GeV of the Higgs boson
mass. By varying MH , the typical features of the results are unchanged, the main difference
being the decrease of the cross section as MH increases. In Fig. 10 we plot the NNLL+NLO
spectra, normalized to the total cross section, for different values of the Higgs boson mass, MH =
125, 165, 200 and 300 GeV. For reference, the corresponding values of the NNLO total cross sections
are σNNLO = 38.43, 24.37, 17.78 and 10.03 pb. As expected, the qT distribution becomes harder
as MH increases. The average value, 〈qT 〉, of the transverse momentum increases almost linearly
with increasing MH , and it is very roughly approximated by an effective lowest-order expression,
〈qT 〉 ∼ CAαS(M2

H) MH .

The quantitative predictions presented up to now are obtained in a purely perturbative frame-
work. It is known (see e.g. Ref. [29] and references therein) that the transverse-momentum
distribution is affected by non-perturbative (NP) effects, which become important as qT becomes
small. In impact parameter space, these effects are associated to the large-b region. In our per-
turbative study the integral over the impact parameter turns out to be dominated by the region
where b∼< 0.1–0.2 GeV−1, larger values of b being strongly suppressed by the resummation of the
logarithmic terms in the gluon form factor. Thus we do not expect particularly-large NP effects
in the case of Higgs boson production at the LHC. This expectation is in agreement with the
findings in Refs. [40–44].

A customary way of modelling NP effects in the case of DY lepton-pair production is to intro-
duce an NP transverse-momentum smearing of the distribution. This is implemented by multiply-
ing the b-space perturbative form factor by an NP form factor. Several different parametrizations
of the NP form factor are available in the literature [63, 74–77]; the corresponding NP parameters

32

Scale variation in pT spectrum 
using CSS formalism:         
hep-ph/0508068

•Resummed exponent in b⊥ space ➔ difficult in matching 
to fixed order calculation in pT space

Differential cross 
section goes negative



EFT FRAMEWORK 
• Low pT region dominated by soft and collinear emissions 
from initial state:

• Hierarchy of scales suggests EFT approach with well defined 
power counting.

pT=0 finite pT finite pT

5

theorem in SCETpT takes the form

d2⌃

dp2T dY
=

⇧

4(N2
c � 1)2

⇤
dp+h dp

�
h

⇤
d2k⇤

h

⇤
d2b⇤
(2⇧)2

e�i⌘k�h ·⌘b�

⇥ ⇤

�
p�h � eY

⌃
p2T +m2

h

⇥
⇤

�
p+h � e�Y

⌃
p2T +m2

h

⇥
⇤
⌅
p+h p

�
h � �k2

h⇤ �m2
h

⇧

⇥
⇤ 1

0

dx1

⇤ 1

0

dx2

⇤
dt+n

⇤
dt�n̄H(x1x2Q

2, µQ;µT ) B̃
�⇥
n (x1, t

+
n , b⇤, µT ) B̃n̄�⇥(x2, t

�
n̄ , b⇤, µT )

⇥ S�1(x1Q� p�h � t�n̄
Q
, x2Q� p+h � t+n

Q
, b⇤, µT ),

(4)

where the collinear functions B̃�⇥
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃�⇥
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⇤ = 0 after contraction of the transverse indices � and ⇥. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ⇤ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in �QCD/pT and the logarithms of �QCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ⇤ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions I�⇥
n,n̄;g,i are just the iBF to

PDF matching coe⌅cients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting di⇥erences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using e⇥ective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ⇤ mh ⌅ pT ⌅ �QCD into perturbative Wilson coe⌅cients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the e⇥ective theories. Power corrections in pT/mh

and �QCD/pT can be systematically derived by going to higher orders in the power

counting of the e⇥ective theories.

2. In addition to the factorization of the scales mh ⌅ pT ⌅ �QCD, the perturbative

physics of the pT scale is further factorized into an iSF S�1 and two distinct collinear

functions I�⇥
n;gi and I�⇥

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S�1, I�⇥
n;gi and I�⇥

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs di⇥er from the standard QCD PDFs by

• Colliding parton is part of initial state pT radiation beam jet:

µΛ µB µHchanging x changing t

(a)

!−

Soft

Soft

!+

Pa Pb

Jet b Jet a

(b)

Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –

PDF Beam/Soft Function
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SCETpT

PDF

iBF

d

h

n

ms PDF

e uae

QCD (nf = 5)

et

iBF l fo

r T

iSF

a

FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ � mh scale followed by RG running down to
the µ � pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ � pT scale and the logarithms of
�QCD/pT are summed via the DGLAP equations which determine the PDFs at the µ � pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coe�cients I�⇥
n;gi and I�⇥

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coe�cients.

5. The iBFs B̃�⇥
n,n̄(x, t, b�, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b� found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b� = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

EFT FRAMEWORK
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parton distribution functions and partonic cross sections:

⇧PP�h =

⌦
dx1dx2fg/P (x1, µ)fg/P (x1, µ)⇧̂gg�h(ŝ, t̂, û, µ), (11)

where ŝ, t̂, and û are the usual partonic Mandelstam variables. For production of the Higgs

with non-zero pT , the di⇥erential partonic cross section is given by [68]

d⇧̂

dt̂
=

⌅

384v2

⇤�s

⌅

⌅3�m8
h + ŝ4 + t̂4 + û4

ŝt̂û

 
. (12)

The total partonic cross section for gg ⌅ h through next-to-leading order in QCD pertur-

bation theory is [7, 9]

⇧̂ =
⌅

576v2

⇤�s

⌅

⌅2�
⇥(1� z) +

�s

⌅

⌥
⇥(1� z)

⇧
⌅2 +

11

2

⌃
� 11

2
(1� z)3

+ 6
�
1 + z4 + (1� z)4

⇥⇧ ln(1� z)

1� z

⌃

+

 
, (13)

where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of e⇥ective theories

QCD(nf = 6) ⌅ QCD(nf = 5) ⌅ SCETpT ⌅ SCET�QCD , (14)

which factorize the physics associated with the di⇥erent scales Q ⇥ mh ⇤ pT ⇤ �QCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is su⌅ciently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) ⌅ QCD(nf = 5) to obtain an e⇥ective coupling of the Higgs

boson to gluons. The cross sections obtained using this e⇥ective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.

The soft-collinear decoupling property of the leading order SCETpT Lagrangian also leads

to a factorization of the soft and collinear sectors, which simplifies calculations of the cross

section in the low pT region. Finally, the matching to SCET�QCD expresses the cross section

in terms of the standard parton distribution functions. We describe in this section the details

of each stage in the matching in QCD(nf = 5) ⌅ SCETpT ⌅ SCET�QCD .

Top quark 
integrated out.

Matched onto 
SCET.

Soft-collinear 
factorization.

Matching onto 
PDFs.

Newly defined objects describing 
soft and collinear pT emissions

SSI 2006 48

where X=W, Z, H, high-ET jets, SUSY sparticles, black hole, …, and Q 

is the ‘hard scale’ (e.g. = MX), usually !F = !R = Q, and " is known …

• to some fixed order in pQCD, e.g. high-ET jets

• or in some leading logarithm approximation 

(LL, NLL, …) to all orders via resummation

Summary: the QCD factorization theorem for hard-

scattering (short-distance) inclusive processes

^

"̂

2

Contents

I. Introduction 2

II. PVDIS Phenomenology 8

III. Isolating Higher Twist Quark Correlations 9

A. Isospin decomposition of structure functions 10

B. Isolating twist-four contribution to the asymmetry 12

C. Equality of R� and R�Z at twist-four 15

IV. Sensitivity Analysis to Higher Twist E�ects 16

V. Charge Symmetry Violation 18

A. Callan-Gross relation: F du
2 = 2xF du

1 18

References 21

d2⇤

dp2
T dY

⇥ H � Gij � fi � fj (1)

130 GeV < mh < 180 GeV (2)

pp⇤ h + X (3)

�s

⇥
(4)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (5)

L(0)
SCET = L(0)

coll. + L(0)
soft (6)



Hard function Impact-parameter Beam 
Functions (iBFs): 
collinear radiation

Soft function: 
soft emission

Transverse momentum function
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dp2
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⇥
�

PS |C � ⌅O⇧|2 (1)

sums logs of mh/pT

d2⇤

dp2
T dY

⇥ H � Gij � fi � fj (2)

130 GeV < mh < 180 GeV (3)

pp ⇤ h + X (4)

�s

⇥
(5)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (6)

• Use soft collinear decoupling to factor out the soft sector

SCET CROSS SECTION
• Schematic form of SCET cross-section:

• Beam function is essentially unintegrated nucleon distribution 
function and can be matched onto PDF
•The transverse momentum function is a convolution of the iBF 
matching coefficient and the inverse soft function 
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⇥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coe⇤cient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

⌥
1 +

�s

4⌅
CA

⇧
11

2
+

⌅2

6
� ln2

⇤
� n̄ · p̂1n · p̂2

µ2

⌅⌃�
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(⇧1,⇧2, µ) = C(⇧1⇧2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an e�ective Higgs-glue vertex. The hard Wilson coe⇤cient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as
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(59)

and then computing the product of matrix elements. Recall that B̃�⇥
n denotes the iBF

without a zero-bin subtraction as opposed to B�⇥
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn⌃ = |0⌃ and computing the tree

26

FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⇥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.
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FIG. 5: Example diagrams contributing to the next-to-leading order iSF. The four lines at each
vertex schematically denote the soft Wilson lines associated appearing in the definition of the iSF
S�1. The diagram on the left corresponds to a virtual correction to the iSF and the diagram on
the right corresponds to a real emission as seen by the cut through the gluon.

where Is is the scaleless integral

Is = 2

⇤
dd⇣

(2⇧)d
1

(⇣2 + i0) (n̄ · ⇣� i0) (n · ⇣+ i0)
, (81)

and vanishes in pure dimensional regularization.

Next we compute the contribution to the iSF from the real emission of an soft gluon

corresponding to choosing |Xs⌅ = |k⌅ for a gluon of momentum k, as shown in the second

diagram of Fig. 5. Explicit computation gives
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Switching to an MS definition of µ and performing integrals as before, we can derive the

following expression:
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The expansion in ⇤ proceeds identically to that for the iBF. Defining the expansion

S�1R(1)(tmax
n � t+n , t

max
n̄ � t�n̄ , b⇤, µ) =

S2

⇤2
+

S1

⇤
+ S0, (84)
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where we have defined the jet and soft functions
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After performing the integrals over the residual momenta k+
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µ
s and the x, y, z

coordinates we arrive at the simpler form
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which appears in Eq. (34).

Appendix B: Equivalence of zero-bin and soft subtractions

In this section we demonstrate the validity of Eq. (38), which we write here again for

convenience
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in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ⇤ mh ⌅ pT ⌅ �QCD, using the

Soft Collinear E⇥ective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the di⇥erential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form
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=
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⇥
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coe⌅cient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coe⌅cient at the pT scale

that has the form

Gij(x1, x
⇥
1, x2, x

⇥
2, pT , Y, µT ) =

�
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�
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Q
, b⇤, µT ),

which is a convolution over the collinear functions I�⇥
n,n̄;g,i and the Inverse Soft Function (iSF)

S�1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coe⌅cient evolved from the

renormalization scale µQ ⇤ mh down to µT ⇤ pT . The logarithms of �QCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ⇤ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of e⇥ective field theories EFT:

QCD(nf = 6) ⇧ QCD(nf = 5) ⇧ SCETpT ⇧ SCET�QCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) ⇧ QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an e⇥ective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this e⇥ective coupling. The

hard scale Q̂ ⇤ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization
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theorem in SCETpT takes the form
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(4)

where the collinear functions B̃�⇥
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃�⇥
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⇤ = 0 after contraction of the transverse indices � and ⇥. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ⇤ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in �QCD/pT and the logarithms of �QCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ⇤ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions I�⇥
n,n̄;g,i are just the iBF to

PDF matching coe⌅cients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting di⇥erences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using e⇥ective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ⇤ mh ⌅ pT ⌅ �QCD into perturbative Wilson coe⌅cients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the e⇥ective theories. Power corrections in pT/mh

and �QCD/pT can be systematically derived by going to higher orders in the power

counting of the e⇥ective theories.

2. In addition to the factorization of the scales mh ⌅ pT ⌅ �QCD, the perturbative

physics of the pT scale is further factorized into an iSF S�1 and two distinct collinear

functions I�⇥
n;gi and I�⇥

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S�1, I�⇥
n;gi and I�⇥

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs di⇥er from the standard QCD PDFs by
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All objects evaluated at pT scale.



Higgs pT Distribution

• Prediction for Higgs boson pT distribution.

24

FIG. 4: Numerical predictions for the transverse momentum spectrum for Higgs boson production
at the LHC for central rapidity. Shown are the fixed-order result and those obtained after imple-
menting the resummation formula of Eq. (6) through LL and NLL. The bands arise from the scale
variation shown in the text.

these would be called LL+LO and NLL+LO. We use MSTW 2008 parton distribution

functions [41]. For LL and LO predictions we use leading order PDFs with 1-loop running

of the strong coupling constant, while for our NLL results we use NLO PDFs with 2-loop

running for �s. Our results depend on the two matching scales µT and µQ, and we vary

these scales to obtain an estimate of the theoretical error. As our central scale choices we

set µ2
T = p2T and µ2

Q = �M2, and vary µ2
T , µ

2
Q independently around these choices by a

factor of 2. Two aspects of these choices require comment. Following Ref. [39], we utilize

an imaginary matching scale for µQ which has the e�ect of resumming factors of ⇤2 which

arise from the time-like momentum transfer appearing in H. This was shown to improve the

convergence of the perturbative expansion for inclusive Higgs production [36, 39], and has

also been utilized in the literature to study Drell-Yan [35]. We also find better agreement

with data (see Fig. 5) for an imaginary µQ compared to a real µQ which can be attributed



Z-production: Comparison with Data

• Good agreement with data.

25

FIG. 5: Numerical predictions for the transverse momentum spectrum for Z boson production
at Tevatron Run 1, compared with data form both CDF and D0. Shown is the resummation
prediction of Eq. (5) at NLL. The bands arise from the scale variation shown in the text, while
the result for the central scale choice is shown by the solid line. The lower limit of the plot is pT=
1.75 GeV.

to the e�ect of resumming factors of ⇤2 with the former choice. We also choose to vary

our scales around a reduced range to avoid evaluating �s(µT ) at too low a value when the

transverse momentum becomes small.

In Fig. 4 we show the predictions for the Higgs pT spectrum at the LHC, using both

the fixed-order expression and the resummed results at LL and NLL accuracies. The

general features of this plot are clear: large logarithms of the form ln (m2
h/p

2
T ) spoil the

fixed-order perturbative expansion at low pT . The Sudakov suppression coming from the

renormalization-group evolution of the hard function H tames this behavior. The central

value of the prediction is absolutely stable upon proceeding from LL to NLL; only a reduc-

tion of the scale variation is observed. At intermediate and high momenta, the matching

onto the fixed-order expression is smooth. The sensitivity to scale choices that can lead to

• Theory curve determined completely by perturbative 
functions and standard PDFs.

arXiv:hep-ph/1011.0757
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factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in �s and ln(MZ/pT ):

d2⌃Z,qq̄

dp2TdY
=

4⇧2

3

�

sin2⇤W
e2qq̄

1

s p2T

 

m,n

⌅
�s(µR)

2⇧

⇧n
nDm lnmM2

Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(�2
s) are kept. We introduce the

explicit forms for the first few coe⇤cients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = �3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coe⇤cients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⇥ f)A + fA (Pqq ⇥ f)B ,

2D3 = �1
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�fB (Pqq ⇥ Pqq ⇥ f)A + ⇥0 fB (Pqq ⇥ f)A
⇤
+ [A ⇤ B] . (74)

The coe⇤cients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coe⇤cients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Di�er-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : �n
sL

2n�1,

next-to-leading logarithmic : �n
sL

2n�2,

next-to-next-to-leading logarithmic : �n
sL

2n�3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

22

factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in �s and ln(MZ/pT ):

d2⌃Z,qq̄

dp2TdY
=

4⇧2

3

�

sin2⇤W
e2qq̄

1

s p2T

 

m,n

⌅
�s(µR)

2⇧

⇧n
nDm lnmM2

Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(�2
s) are kept. We introduce the

explicit forms for the first few coe⇤cients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = �3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coe⇤cients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⇥ f)A + fA (Pqq ⇥ f)B ,

2D3 = �1

2

�
A(1)
⇥2
fAfB,

2D2 = �3

2
A(1)
�
fB (Pqq ⇥ f)A + fA (Pqq ⇥ f)B

⇥
�
⌃
3

2
A(1)B(1) � ⇥0A

(1)

⌥
fAfB,

2D1 =

�
�A(1)fB (Pqq ⇥ f)A ln

µ2
F

M2
Z

� 2B(1)fB (Pqq ⇥ f)A � 1

2

�
B(1)
⇥2
fAfB

+
⇥0

2
A(1)fAfB ln

µ2
R

M2
Z

+
⇥0

2
B(1)fAfB � (Pqq ⇥ f)A (Pqq ⇥ f)B

�fB (Pqq ⇥ Pqq ⇥ f)A + ⇥0 fB (Pqq ⇥ f)A
⇤
+ [A ⇤ B] . (74)

The coe⇤cients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coe⇤cients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Di�er-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : �n
sL

2n�1,

next-to-leading logarithmic : �n
sL

2n�2,

next-to-next-to-leading logarithmic : �n
sL

2n�3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

22

factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in �s and ln(MZ/pT ):

d2⌃Z,qq̄

dp2TdY
=

4⇧2

3

�

sin2⇤W
e2qq̄

1

s p2T

 

m,n

⌅
�s(µR)

2⇧

⇧n
nDm lnmM2

Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(�2
s) are kept. We introduce the

explicit forms for the first few coe⇤cients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = �3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coe⇤cients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⇥ f)A + fA (Pqq ⇥ f)B ,

2D3 = �1

2

�
A(1)
⇥2
fAfB,

2D2 = �3

2
A(1)
�
fB (Pqq ⇥ f)A + fA (Pqq ⇥ f)B

⇥
�
⌃
3

2
A(1)B(1) � ⇥0A

(1)

⌥
fAfB,

2D1 =

�
�A(1)fB (Pqq ⇥ f)A ln

µ2
F

M2
Z

� 2B(1)fB (Pqq ⇥ f)A � 1

2

�
B(1)
⇥2
fAfB

+
⇥0

2
A(1)fAfB ln

µ2
R

M2
Z

+
⇥0

2
B(1)fAfB � (Pqq ⇥ f)A (Pqq ⇥ f)B

�fB (Pqq ⇥ Pqq ⇥ f)A + ⇥0 fB (Pqq ⇥ f)A
⇤
+ [A ⇤ B] . (74)

The coe⇤cients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coe⇤cients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Di�er-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : �n
sL

2n�1,

next-to-leading logarithmic : �n
sL

2n�2,

next-to-next-to-leading logarithmic : �n
sL

2n�3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

Leading Log
Next-to-Leading Log

Agrees through NLL level
2D1 requires NNLL

Check to pQCD
• Expand resummed formula to compare to fixed order



Next-to-Next-to Leading Logarithm

• NNLO Beam/Soft function required for NNLL 
resummation
• Soft function worked out as the first step
• NNLO beam function in progress 

arXiv:hep-ph/1105.5171

Two loop graphs for soft function



•Anomalous dimensions in position and impact-
parameter space
•Old result confirmed: Belitsky (hep-ph/9808389)
•New in impact-parameter space
•New renormalized soft function in full position 
and impact-parameter space

Soft Function at NNLO



Summary
• Factorization formula:

• Perturbative pT distribution given in terms of perturbatively 
calculable functions and the standard PDFs.
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• Performed NLL resummation and found good agreement 
with data.

• Next step: NNLL resummation
• Soft function done
• Beam function in progress


